logistics/售价模型计算.ipynb

392 lines
14 KiB
Plaintext
Raw Normal View History

2025-06-17 13:40:20 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"取ERP采购价+ERP尺寸+实际尺寸,需要国家+条目+邮编+order_id\n"
]
},
{
"cell_type": "code",
2025-06-26 02:51:51 +08:00
"execution_count": 4,
2025-06-17 13:40:20 +08:00
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2025-06-26 02:51:51 +08:00
"C:\\Users\\joker\\AppData\\Local\\Temp\\ipykernel_34576\\54471085.py:105: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
" df=pd.read_sql(\"SELECT * FROM `order_complet4` WHERE buy_amount is not null and `实际尺寸售价` IS NULL limit 100\",db.con)\n"
2025-06-17 13:40:20 +08:00
]
}
],
"source": [
"import pandas as pd\n",
"from utils.gtools import MySQLconnect\n",
"\n",
"# 读取需要计算的包裹信息\n",
2025-06-26 00:50:14 +08:00
"with MySQLconnect('ads') as db:\n",
2025-06-17 13:40:20 +08:00
" sql = r\"\"\" \n",
" # 限制范围是测量时间取得SKU种类为1且数量为1的订单且重复SKU只取最近的订单\n",
"\n",
"WITH\n",
"t1 AS (\n",
"SELECT\n",
"order_id,\n",
"SKU,\n",
"order_date,\n",
"sum(CASE WHEN opl.order_product_id LIKE '%\\_%' ESCAPE '\\\\' \n",
" AND opl.order_product_id NOT LIKE '%\\_%\\_%' ESCAPE '\\\\' THEN product_num END) AS product_num,\n",
"DATE_FORMAT(order_date,\"%Y-%m-%d\") AS 订单时间,\n",
"count(opl.SKU) AS 产品种类\n",
"FROM\n",
"dws.fact_order_product_list opl\n",
"WHERE\n",
" NOT EXISTS (\n",
" SELECT 1 \n",
" FROM dws.log_order_reissue_detail AS r \n",
" WHERE r.order_product_id = opl.order_product_id\n",
" )\n",
"AND order_date >= \"20250501\"\n",
"AND order_date < \"20250612\"\n",
"AND SKU <> \"\"\n",
"GROUP BY order_id\n",
")\n",
",\n",
"t2 AS (\n",
"SELECT\t\t\t\n",
" a.`包裹测量时间`,\n",
"\t\t\t\t\t\tt1.order_id,\n",
"\t\t\t\t\t\tt1.SKU,\n",
"\t\t\t\t\t\tt1.order_date,\n",
" a.包裹号,\n",
" a.快递公司,\n",
" a.运输方式,\n",
"\t\t\t\t\t\ta.`目的国`,\n",
" d.postcode,\n",
" CONCAT(\n",
" '\"', b.package, '\": {',\n",
" '\"长\": ', length, ', ',\n",
" '\"宽\": ', width, ', ',\n",
" '\"高\": ', hight, ', ',\n",
" '\"重量\": ', weight, '}'\n",
" ) AS package_json\n",
" FROM\n",
"\t\t\t\tt1\n",
" LEFT JOIN order_express a ON t1.order_id = a.单号\n",
" JOIN package_vol_info b ON a.`包裹号` = b.package\n",
" JOIN order_list d ON a.`单号` = d.order_id \n",
" WHERE\n",
" a.`包裹状态` IN ( '客户签收', '已经投递') \n",
" AND b.hight > 0 \n",
" AND b.length > 0 \n",
" AND b.width > 0 \n",
" AND b.hight > 0 \n",
" AND b.weight > 0\n",
"-- AND a.`目的国` = \"United States\"\n",
"\t\t\t\t\t\tAND t1.product_num = 1\n",
"\t\t\t\t\t\tAND t1.产品种类=1\n",
"\t\t\t\t\t\tAND a.`包裹测量时间` >= '2025-05-01'\n",
"\t\t\t\t\t\tAND a.`包裹测量时间` < '2025-06-12'\n",
"),\n",
"t3 AS (\n",
"SELECT\n",
"t2.*,\n",
"sku.成本价 AS ERP采购价,\n",
"ess.erp_package_vol AS ERP包裹数据,\n",
"CONCAT('{', GROUP_CONCAT(package_json SEPARATOR ','), '}') AS 实际包裹数据,\n",
"ROW_NUMBER() OVER (PARTITION BY SKU ORDER BY 包裹测量时间 DESC) as rn\n",
"FROM\n",
"t2\n",
"LEFT JOIN dwd.dim_erp_sku_package_vol_info ess ON t2.SKU=ess.erp_sku\n",
"LEFT JOIN stg_bayshop_litfad_sku sku ON t2.SKU=sku.SKU\n",
"WHERE\n",
"ess.`erp_package_vol`<>\"{}\" AND ess.`erp_package_vol`<>\"\"\n",
"GROUP BY order_id\n",
")\n",
"SELECT\n",
"包裹测量时间,\n",
"order_id,\n",
"SKU,\n",
"DATE_FORMAT(order_date,\"%Y-%M-%D\") AS 订单时间,\n",
"包裹号,\n",
"`快递公司`,\n",
"`运输方式`,\n",
"`目的国`,\n",
"postcode,\n",
"ERP采购价,\n",
"ERP包裹数据,\n",
"实际包裹数据\n",
"FROM\n",
"t3\n",
"WHERE\n",
"rn=1\n",
"\n",
"\n",
"\n",
" \"\"\"\n",
2025-06-26 02:51:51 +08:00
" df=pd.read_sql(\"SELECT * FROM `order_complet4` WHERE buy_amount is not null and `实际尺寸售价` IS NULL limit 100\",db.con)\n"
2025-06-17 13:40:20 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"取实际采购价当前已有ERP采购价+ERP尺寸+实际尺寸输入df['order_id']输出df['采购成本']"
]
},
{
"cell_type": "code",
2025-06-26 00:50:14 +08:00
"execution_count": null,
2025-06-17 13:40:20 +08:00
"metadata": {},
2025-06-26 00:50:14 +08:00
"outputs": [],
2025-06-17 13:40:20 +08:00
"source": [
"from utils.gtools import MySQLconnect\n",
"\n",
"ods = MySQLconnect(\"ods\")\n",
"engine = ods.engine()\n",
"cursor = ods.connect().cursor()\n",
"\n",
"batch_size = 50000 # 每次查询 500 个 order_id避免 SQL 语句过长\n",
"order_id_list = df[\"order_id\"].drop_duplicates().tolist() # 取出所有 order_id\n",
"# df['postcode'] = \"38016\"\n",
"# 存储分批查询的结果\n",
"result_dfs1 = []\n",
"result_dfs2 = []\n",
"for i in range(0, len(order_id_list), batch_size):\n",
" batch_order_ids = order_id_list[i:i + batch_size] # 取当前批次的 order_id\n",
" param = \",\".join(f\"'{order_id}'\" for order_id in batch_order_ids)\n",
"\n",
" purchase_order_sql = f\"\"\"\n",
" WITH t1 AS (\n",
" SELECT LEFT(ol.out_detials_outlink_id, 15) AS order_id,\n",
" SUM(out_detials_qty * price) AS instock_cost,\n",
" NULL AS buy_cost\n",
" FROM ods.outstock_list ol\n",
" JOIN ods.instock_list il ON ol.store_in_id = il.id \n",
" WHERE LEFT(ol.out_detials_outlink_id, 15) IN ({param})\n",
" GROUP BY LEFT(ol.out_detials_outlink_id, 15)\n",
" \n",
" UNION ALL\n",
" \n",
" SELECT LEFT(order_product_id, 15) AS order_id, \n",
" NULL AS instock_cost,\n",
" SUM(buy_num * actual_price) AS buy_cost\n",
" FROM warehouse_purchasing\n",
" WHERE LEFT(order_product_id, 15) IN ({param}) \n",
" AND buy_audit = \"采购完成\"\n",
" GROUP BY LEFT(order_product_id, 15)\n",
" )\n",
" SELECT order_id,\n",
" SUM(CASE \n",
" WHEN instock_cost IS NULL THEN buy_cost\n",
" ELSE instock_cost \n",
" END) AS 采购成本\n",
" FROM t1 \n",
" GROUP BY order_id\n",
" \"\"\"\n",
" \n",
"\n",
" batch_df1 = pd.read_sql(purchase_order_sql, con=engine) # 运行 SQL 查询\n",
" result_dfs1.append(batch_df1) # 存入结果列表\n",
" print(f\"已完成 {i + batch_size} 个 order_id 的查询\")\n",
"\n",
"# 合并所有查询结果\n",
"purchase_order_df1 = pd.concat(result_dfs1, ignore_index=True)\n",
"purchase_order_df1[\"order_id\"] = purchase_order_df1[\"order_id\"].astype(str)\n",
"\n",
"\n",
"# 转换数据类型,确保匹配\n",
"df[\"order_id\"] = df[\"order_id\"].astype(str)\n",
"\n",
"# 进行合并\n",
"df = pd.merge(df, purchase_order_df1, on='order_id', how='left')\n",
"# 复制到剪贴板\n",
"df.to_clipboard(index=False)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"计算标准网站售价,输入尺寸,输出售价和订单物流费"
]
},
{
"cell_type": "code",
2025-06-26 02:51:51 +08:00
"execution_count": 3,
2025-06-17 13:40:20 +08:00
"metadata": {},
"outputs": [
{
2025-06-26 02:51:51 +08:00
"ename": "NameError",
"evalue": "name 'df' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[3], line 16\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (sell_price, order_price, order_type)\n\u001b[0;32m 15\u001b[0m \u001b[38;5;66;03m# 计算当前售价\u001b[39;00m\n\u001b[1;32m---> 16\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m index,row \u001b[38;5;129;01min\u001b[39;00m df\u001b[38;5;241m.\u001b[39miterrows():\n\u001b[0;32m 17\u001b[0m price \u001b[38;5;241m=\u001b[39m row[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbuy_amount\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[0;32m 18\u001b[0m \u001b[38;5;66;03m# package_dict = json.loads(row['erp_package_vol'])\u001b[39;00m\n",
"\u001b[1;31mNameError\u001b[0m: name 'df' is not defined"
2025-06-17 13:40:20 +08:00
]
}
],
"source": [
"def call_sell_price(price, package_dict,head_type=\"海运\"):\n",
" import json\n",
" from sell.sell_price import call_sell_and_order_price\n",
" try:\n",
" package_dict = json.loads(package_dict)\n",
" all_sell_price, order_price, order_type = call_sell_and_order_price(price, package_dict,head_type)\n",
" except Exception as e:\n",
" print(f\" 报错: {e}\")\n",
2025-06-26 00:50:14 +08:00
" return (\"\",\"\",\"\")\n",
" if all_sell_price == 0:\n",
" return (\"\",\"\",\"\")\n",
" sell_price= all_sell_price\n",
" # logis_price = all_sell_price[1]\n",
" return (sell_price, order_price, order_type)\n",
2025-06-17 13:40:20 +08:00
"# 计算当前售价\n",
"for index,row in df.iterrows():\n",
2025-06-26 00:50:14 +08:00
" price = row['buy_amount']\n",
2025-06-17 13:40:20 +08:00
" # package_dict = json.loads(row['erp_package_vol'])\n",
2025-06-26 00:50:14 +08:00
" sell_price = call_sell_price(price, row['package_json'],\"海运\")\n",
" print(sell_price)\n",
2025-06-17 13:40:20 +08:00
" df.loc[index,'网站售价'] = sell_price[0]\n",
2025-06-26 00:50:14 +08:00
" df.loc[index,'订单物流费'] = sell_price[1]\n",
" df.loc[index,'尾端类型'] = sell_price[2]\n",
" print(f\"SKU: {row['sku']} 网站售价: {sell_price[0]} 订单物流费: {sell_price[1]} 尾端类型: {sell_price[2]}\")\n",
2025-06-17 13:40:20 +08:00
"df.to_clipboard(index=False)"
]
},
{
"cell_type": "code",
2025-06-26 00:50:14 +08:00
"execution_count": 3,
2025-06-17 13:40:20 +08:00
"metadata": {},
"outputs": [],
"source": [
2025-06-26 00:50:14 +08:00
"df.to_clipboard()"
2025-06-17 13:40:20 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"计算实际渠道物流费用"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from utils.countryOperator import OperateCountry\n",
"from utils.logisticsBill import BillFactory\n",
"from utils.Package import Package, Package_group\n",
"import pandas as pd\n",
"import json\n",
"import re\n",
"# 美国 \n",
"from utils.logisticsBill import Billing\n",
"import requests\n",
"\n",
"for index, row in df.iterrows():\n",
" opCountry = OperateCountry('US')\n",
" postcode = row['postcode']\n",
" if pd.isna(postcode) or str(postcode).lower() == \"nan\":\n",
" continue\n",
" try:\n",
" package_dict = json.loads(row['实际包裹数据'])\n",
" except Exception as e:\n",
" print(f\"行 {index} 解析失败: {e}\")\n",
" print(row['实际包裹数据'])\n",
" continue\n",
" packages = Package_group()\n",
" def extract_number(value):\n",
" # 提取字符串中的第一个数字\n",
" match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", str(value))\n",
" return float(match.group()) if match else 0.0\n",
" for key, package in package_dict.items():\n",
" package['长'] = extract_number(package['长'])\n",
" package['宽'] = extract_number(package['宽'])\n",
" package['高'] = extract_number(package['高'])\n",
" package['重量'] = extract_number(package['重量'])\n",
" \n",
" if package['长'] == 0 or package['宽'] == 0 or package['高'] == 0 or package['重量'] == 0:\n",
" continue\n",
" packages.add_package(Package(key,package['长'], package['宽'], package['高'], package['重量']))\n",
" if packages is None:\n",
" continue\n",
" if \"海运\" in row['运输方式']:\n",
" head_type = 1\n",
" else:\n",
" head_type = 0\n",
"\n",
" # if \"FEDEX-SAIR-G\" in row['快递公司']:\n",
" # company_name = \"Fedex-GROUD\"\n",
" # elif \"FEDEX-SAIR-H\" in row['快递公司']:\n",
" # company_name = \"Fedex-HOME\"\n",
" # elif \"FEDEX02\" in row['快递公司']:\n",
" # company_name = \"Fedex-彩虹小马\"\n",
" # elif \"大包\" in row['快递公司'] or row['快递公司'] == '海MS-FEDEX':\n",
" # company_name = \"Fedex-金宏亚\"\n",
" # elif \"GIGA\" in row['快递公司']:\n",
" # company_name = \"大健-GIGA\"\n",
" # elif \"CEVA\" in row['快递公司']:\n",
" # company_name = \"大健-CEVA\"\n",
" # elif \"USPS\" in row['快递公司']:\n",
" # company_name = \"Fedex-GROUD\"\n",
" # else:\n",
" # company_name = \"大健-Metro\"\n",
" \n",
" bill = Billing(str(index),opCountry,packages,postcode,company_name=\"Fedex-GROUD\",head_type=head_type,beizhu='1')\n",
" head_price = bill.head_amount[0]\n",
" tail_price = bill.tail_amount[0]\n",
" if \"USPS\" in row['快递公司']:\n",
" tail_price = tail_price/2\n",
" # df.loc[index,'头程CNY'] = head_price\n",
" df.loc[index,'头程CNY'] = head_price\n",
" # df.loc[index,'最优渠道'] = bill.company_name\n",
" print(f\"行 {index} 处理完成\")\n",
" \n",
"df.to_clipboard(index=False)\n",
" "
]
2025-06-26 02:51:51 +08:00
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from utils.gtools import MySQLconnect\n",
"import pandas as pd\n",
"df = pd.read_clipboard()\n",
"log = MySQLconnect('logistics')\n",
"pd.io.sql.to_sql(df, 'table_name', con=log.engine(), if_exists='replace', index=False)"
]
2025-06-17 13:40:20 +08:00
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2025-06-26 00:50:14 +08:00
"version": "3.12.7"
2025-06-17 13:40:20 +08:00
}
},
"nbformat": 4,
"nbformat_minor": 2
}