This commit is contained in:
Wenxixi 2025-09-10 13:37:38 +08:00
parent c2cbfaf59c
commit 38cc3c8b51
10 changed files with 429 additions and 107 deletions

BIN
data/Metro.xlsx (Stored with Git LFS)

Binary file not shown.

BIN
data/XMILES.xlsx (Stored with Git LFS)

Binary file not shown.

View File

@ -46,6 +46,17 @@ class PostLogistics_AU(TailLogistics):
self.eparcel_price = self.__class__.eparcel_price
self.fuel_rate =0.051# 0.074 0.064
def is_remote(self, postcode):
"""判断分区"""
# 先看邮编呐
self.eparcel_zone['邮编'] = self.eparcel_zone['邮编'].astype(str).str.zfill(4)
filtered_df = self.eparcel_zone[self.eparcel_zone['邮编'] == postcode]
if filtered_df.empty:
return "不支持配送"
post = filtered_df['地区代码'].iloc[0] # 获取第一行的 '地区代码'
return post
def calculate_fee(self, packages, postcode):
"""
计费重: 常规计费, 4000
@ -65,15 +76,10 @@ class PostLogistics_AU(TailLogistics):
detail_amount['tail_amount'] = 88888
return detail_amount
# 先看邮编呐
self.eparcel_zone['邮编'] = self.eparcel_zone['邮编'].astype(str).str.zfill(4)
filtered_df = self.eparcel_zone[self.eparcel_zone['邮编'] == postcode]
if filtered_df.empty:
post = self.is_remote(postcode)
if post == "不支持配送":
detail_amount['tail_amount'] = 99999
return detail_amount
post = filtered_df['地区代码'].iloc[0] # 获取第一行的 '地区代码'
# 根据post筛选出对应行
row = self.eparcel_price[self.eparcel_price['post'] == post]
# 检查 row 是否为空
@ -138,7 +144,16 @@ class TollLogistics_AU(TailLogistics):
self.toll_remote = self.__class__.toll_remote
self.fuel_rate = 0.0725
self.oversize_fee = [15.5,62]
def is_remote(self, postcode):
"""判断分区"""
# 先看邮编呐
self.toll_zone['postcode'] = self.toll_zone['postcode'].astype(str).str.zfill(4)
filtered_df = self.toll_zone[self.toll_zone['postcode'] == postcode]
if filtered_df.empty:
return "不支持配送"
post = filtered_df['post'].iloc[0] # 获取第一行的 '地区代码'
return post
def calculate_fee(self, packages, postcode):
# 抛重4000
detail_amount = {
@ -155,14 +170,10 @@ class TollLogistics_AU(TailLogistics):
else:
detail_amount['tail_amount'] = 88888
return detail_amount
# 先看邮编呐
self.toll_zone['postcode'] = self.toll_zone['postcode'].astype(str).str.zfill(4)
filtered_df = self.toll_zone[self.toll_zone['postcode'] == postcode]
if filtered_df.empty:
post = self.is_remote(postcode)
if post == "不支持配送":
detail_amount['tail_amount'] = 99999
return detail_amount
post = filtered_df['post'].iloc[0] # 获取第一行的 '地区代码'
# 根据post筛选出对应行
row = self.toll_price[self.toll_price['post'] == post]
# 检查 row 是否为空
@ -246,6 +257,17 @@ class AllLogistics_AU(TailLogistics):
self.oversize_fee = [7.8,10.92,12.41,26.42,92.15,123.96,160.07]
self.handing_fee = 15.34 # 不收燃油费
self.twomancrew_fee = [49.92,78,124.8] # 多包裹的情况下,只收一次最大的
def is_remote(self, postcode):
"""判断分区"""
# 先看邮编呐
# 先看邮编呐
self.all_zone['postcode'] = self.all_zone['postcode'].astype(str).str.zfill(4)
filtered_df = self.all_zone[self.all_zone['postcode'] == postcode]
if filtered_df.empty:
return "不支持配送"
post = filtered_df['post'].iloc[0] # 获取第一行的 '地区代码'
return post
def calculate_fee(self, packages, postcode):
# 抛重4000
detail_amount = {
@ -265,15 +287,10 @@ class AllLogistics_AU(TailLogistics):
else:
detail_amount['tail_amount'] = 88888
return detail_amount
# 先看邮编呐
self.all_zone['postcode'] = self.all_zone['postcode'].astype(str).str.zfill(4)
filtered_df = self.all_zone[self.all_zone['postcode'] == postcode]
if filtered_df.empty:
post = self.is_remote(postcode)
if post == "不支持配送":
detail_amount['tail_amount'] = 99999
return detail_amount
post = filtered_df['post'].iloc[0] # 获取第一行的 '地区代码'
try:
base = self.all_price[self.all_price['post']==post]['Base'].iloc[0]
per = self.all_price[self.all_price['post']==post]['Per'].iloc[0]
@ -343,7 +360,82 @@ class AllLogistics_AU(TailLogistics):
detail_amount['fuel'] += detail_amount[key] * self.fuel_rate
detail_amount['tail_amount'] += detail_amount['fuel']
return detail_amount
# TMS
# class TMSLogistics_AU(TailLogistics):
# country_code = 'AU'
# country = 'Australia'
# company = 'TMS'
# currency = 'AUD'
# _is_loaded = False
# parent_current_directory = Path(__file__).parent.parent
# remote_path = parent_current_directory.joinpath("data")
# _postcode_files = remote_path.joinpath("澳洲三大渠道.xlsx")
# def __new__(cls):
# """实现单例模式,只加载一次文件"""
# if not cls._is_loaded:
# cls._load_postcodes() # 第一次实例化时加载文件
# cls._is_loaded = True # 标记文件已加载
# return super().__new__(cls)
# @classmethod
# def _load_postcodes(cls):
# """加载文件"""
# cls.toll_zone = pd.read_excel(str(cls._postcode_files),sheet_name="toll_postcode",usecols="A:B")
# cls.toll_price = pd.read_excel(str(cls._postcode_files),sheet_name="toll",usecols="A:D")
# cls.toll_remote = pd.read_excel(str(cls._postcode_files),sheet_name="toll_remote",usecols="A:D")
# def __init__(self):
# super().__init__()
# self.toll_zone = self.__class__.toll_zone
# self.toll_price = self.__class__.toll_price
# self.toll_remote = self.__class__.toll_remote
# self.fuel_rate = 0.0725
# self.oversize_fee = [15.5,62]
# def is_remote(self, postcode):
# """判断分区"""
# # 先看邮编呐
# self.toll_zone['postcode'] = self.toll_zone['postcode'].astype(str).str.zfill(4)
# filtered_df = self.toll_zone[self.toll_zone['postcode'] == postcode]
# if filtered_df.empty:
# return "不支持配送"
# post = filtered_df['post'].iloc[0] # 获取第一行的 '地区代码'
# return post
# def calculate_fee(self, packages, postcode):
# # 抛重4000
# detail_amount = {
# "base":0.00,
# "oversize":0.00,
# "remote":0.00,
# "fuel":0.00,
# "tail_amount":0.00
# }
# if isinstance(postcode, str):
# postcode = ''.join(filter(str.isdigit, postcode)) # 只保留数字部分
# if postcode: # 确保postcode不是空字符串
# postcode = str(int(postcode)).zfill(4) # 转换为整数再补齐4位
# else:
# detail_amount['tail_amount'] = 88888
# return detail_amount
# post = self.is_remote(postcode)
# if post == "不支持配送":
# detail_amount['tail_amount'] = 99999
# return detail_amount
# # 根据post筛选出对应行
# row = self.toll_price[self.toll_price['post'] == post]
# # 检查 row 是否为空
# if row.empty:
# detail_amount['tail_amount'] = 99999
# return detail_amount
# base = row['Base'].iloc[0]
# per = self.toll_price[self.toll_price['post']==post]['Per'].iloc[0]
# minimun = self.toll_price[self.toll_price['post']==post]['Minimun'].iloc[0]
# for package in packages:
# return detail_amount
if __name__ == '__main__':
# 测试
aau = PostLogistics_AU()

View File

@ -860,5 +860,111 @@ class EURZGLogistics_IR(EURZGLogistics):
self.limit_kg = 30
self.remote = 999999
self.fuel_rate = 0.01
def is_remote(self,postcode):
return 0
# DPD-NV德国始发
class DPDNVLogistics(TailLogistics):
"""DPD-NV"""
currency = "EUR"
company = "DPD-NV"
def __init__(self):
super().__init__()
self.base_20 = None
self.base_31= None
self.oversize = 4.62
self.big_package = 40.15
self.remote = 0
def is_remote(self,postcode):
"""判断是否偏远,1偏远0非偏远"""
raise NotImplementedError("Subclasses must implement remote calculation.")
def calculate_fee(self,packages,postcode):
"""计算快递费用,40kg,250cm长,330cm围长"""
detail_amount = {
"base":0.00,
"oversize":0.00,
"big_package":0.00,
"remote":0.00,
"tail_amount":0.00
}
isremote = self.is_remote(postcode)
if isremote == "邮编格式不合法":
detail_amount['tail_amount'] = 99999
return detail_amount
if isremote == 1:
detail_amount['remote'] = self.remote
for package in packages: # 逐个处理列表中的每个包裹
if package.fst_size >= 250 or package.weight >= 40000 or package.girth>=330:
detail_amount['tail_amount'] = 99999
return detail_amount
detail_amount['base'] += self.base_31 if package.weight >= 20000 else self.base_20
if package.fst_size >= 175 or package.weight >= 31500 or package.girth>=300:
detail_amount['big_package'] = self.big_package
elif package.fst_size >= 120 or package.sed_size>=60 or package.volume>=150000:
detail_amount['oversize'] = self.oversize
for key in detail_amount:
if key != 'tail_amount':
detail_amount['tail_amount'] += detail_amount[key]
return detail_amount
class DPDNVLogistics_DE(DPDNVLogistics):
country_code = 'DE'
country = 'Germany'
def __init__(self):
super().__init__()
self.base_20 = 4.3625
self.base_31= 4.6125
def is_remote(self,postcode):
return 0
class DPDNVLogistics_FR(DPDNVLogistics):
country_code = 'FR'
country = 'France'
def __init__(self):
super().__init__()
self.base_20 = 12.2375
self.base_31= 12.4875
def is_remote(self,postcode):
return 0
class DPDNVLogistics_IT(DPDNVLogistics):
country_code = 'IT'
country = 'Italy'
def __init__(self):
super().__init__()
self.base_20 = 14.0375
self.base_31= 14.7375
def is_remote(self,postcode):
return 0
class DPDNVLogistics_PT(DPDNVLogistics):
country_code = 'PT'
country = 'Portugal'
def __init__(self):
super().__init__()
self.base_20 = 18.45
self.base_31= 22.375
def is_remote(self,postcode):
return 0
class DPDNVLogistics_ES(DPDNVLogistics):
country_code = 'ES'
country = 'Spain'
def __init__(self):
super().__init__()
self.base_20 = 14.0375
self.base_31=14.7375
def is_remote(self,postcode):
return 0
class DPDNVLogistics_IR(DPDNVLogistics):
country_code = 'IR'
country = 'Ireland'
def __init__(self):
super().__init__()
self.base_20 = 18.45
self.base_31= 22.375
def is_remote(self,postcode):
return 0

View File

@ -271,9 +271,9 @@ class KPNVlogistics_UK(TailLogistics):
# class KPDXLogistics_UK(TailLogistics):
# country_code = 'UK'
# country = 'United Kingdom'
# company = 'DX-EL'
# company = 'AIT-FUXIN'
# currency = 'GBP'
# logistics_type = LogisticsType.LTL
# # logistics_type = LogisticsType.LTL
# def __init__(self):
# super().__init__()
# self.base_fee = 0
@ -283,6 +283,11 @@ class KPNVlogistics_UK(TailLogistics):
# "oversize":0.00,
# "tail_amount":0.00
# }
# for package in packages:
# if package.weight>=250000 or package.volume>=1500000:
# detail_amount['tail_amount'] = 99999
# return detail_amount
# if
if __name__ == '__main__':
# # 关闭渠道

View File

@ -662,7 +662,6 @@ class MetroNYLogistics_US(TailLogistics):
return detail_amount
zone = zone_result.iloc[0]
total_cuft = 0
max_weight = 0
max_length = 0

View File

@ -137,30 +137,30 @@ def air_order_price(packages):
return express_fee, express_type
# 美国售价2025
def call_sell_price_2025(price, package_dict):
def call_sell_price_2025(price, packages):
"""
price:采购价
package_dict:包裹数据
head_type:头程类型 海运/空运
"""
packages = Package_group()
def extract_number(value):
# 提取字符串中的第一个数字
match = re.search(r"[-+]?\d*\.\d+|\d+", str(value))
return float(match.group()) if match else 0.0
# packages = Package_group()
# def extract_number(value):
# # 提取字符串中的第一个数字
# match = re.search(r"[-+]?\d*\.\d+|\d+", str(value))
# return float(match.group()) if match else 0.0
for key, package in package_dict.items():
package[''] = extract_number(package[''])
package[''] = extract_number(package[''])
package[''] = extract_number(package[''])
package['重量'] = extract_number(package['重量'])
# for key, package in package_dict.items():
# package['长'] = extract_number(package['长'])
# package['宽'] = extract_number(package['宽'])
# package['高'] = extract_number(package['高'])
# package['重量'] = extract_number(package['重量'])
if package[''] == 0 or package[''] == 0 or package[''] == 0 or package['重量'] == 0:
return 0,0,0
packages.add_package(Package(key,package[''], package[''], package[''], package['重量']))
# if package['长'] == 0 or package['宽'] == 0 or package['高'] == 0 or package['重量'] == 0:
# return 0,0,0
# packages.add_package(Package(key,package['长'], package['宽'], package['高'], package['重量']))
if packages is None:
return 0,0,0
# if packages is None:
# return 0,0,0
litfad = SellPriceBase.litfad_2025(packages, price,1)
# 修改版本,网站售价
sell_price = litfad.cal_sell_price_2025()

View File

@ -21,10 +21,10 @@ ACTIVE_LOGISTICS = {
# EUR
"DPDASLLogistics":False, # 需关闭
"DPDNVLogistics":True,
# GB
"bigLogistics_UK":False, # 需关闭
"KPZGLogistics_UK":False, # 需关闭
"KPZGLogistics_UK":True, # 需关闭
"bigLogistics_UK":False, # 需关闭,智谷旧版大件8新版是分区的
}

View File

@ -48,7 +48,7 @@ logistics_name = {
"空AMS-EUR":"EUR-ZG",
"海NL-卡派2":"卡派-GEL",
"海NL-DPD-ASL":"DPD-ASL",
"海NL-DPD-NV":"--"
"海NL-DPD-NV":"DPD-NV"
}

View File

@ -10,13 +10,38 @@ from utils.logisticsBill import BillFactory, Billing
from utils.countryOperator import OperateCountry
from utils.Package import Package, Package_group
from utils.logistics_name_config import logistics_name
from datetime import date
# 货币转换其他转RMB
def convert_currency(amount, current_currency):
"""
货币转换
"""
if amount is None or amount ==0:
return "金额为空"
if amount >=9999:
return "无可用渠道"
if current_currency == "USD":
amount=amount*7
elif current_currency == "GBP":
amount =amount*9
elif current_currency == "EUR":
amount = amount*8
elif current_currency == "AUD":
amount = amount*5
elif current_currency == "CAD":
amount = amount*5
elif current_currency == "JPY":
amount =amount*0.05
return amount
# 获取数据
def fetch_order_data():
"""从数据库获取原始订单数据"""
with MySQLconnect('ods') as db:
sql = """
SELECT
ol.order_date,
DATE_FORMAT(ol.order_date, '%%Y-%%m-%%d') AS order_date,
DATE_FORMAT(oe.投递时间, '%%Y-%%m-%%d') AS 投递时间,
ol.fund_status,
oe.`包裹状态`,
oe.包裹号 AS package,
@ -33,9 +58,8 @@ def fetch_order_data():
pvi.weight AS 重量,
pfi.express_fee AS 基础估算,
pfi.express_additional_fee AS 偶发估算,
pfi.express_fee + pfi.express_additional_fee AS 总估算,
oe.快递公司
pfi.express_fee + pfi.express_additional_fee AS 包裹总估算,
oe.快递公司 AS 投递渠道
FROM
ods.order_express oe
LEFT JOIN ods.express_company ecm ON oe.快递公司 = ecm.快递公司
@ -43,14 +67,16 @@ def fetch_order_data():
LEFT JOIN ods.package_fee_info pfi ON oe.包裹号 = pfi.package
LEFT JOIN ods.order_list ol ON oe.单号 = ol.order_id
WHERE
oe.包裹状态 REGEXP '已经投递|发货仓出库'
AND oe.`快递公司` NOT REGEXP "--"
oe.包裹状态 not REGEXP '已作废|--|客户签收'
# AND oe.`快递公司` NOT REGEXP "--"
AND `卡板发货时间` REGEXP "--"
AND ol.fund_status NOT REGEXP '等待|全额退款'
AND ol.site_name REGEXP 'litfad|kwoking|lakiq'
AND oe.投递时间 >= DATE_SUB(NOW(), INTERVAL 3 DAY)
AND pvi.length>0 AND pvi.width >0 AND pvi.hight>0 AND pvi.weight>0
and oe.目的国 regexp 'United States'
AND pvi.length>0 AND pvi.width >0 AND pvi.hight>0 AND pvi.weight>0
and oe.目的国 regexp 'United States|Australia|United Kingdom|Germany|France|Spain|Italy|Netherlands|Belgium'
order by ol.order_id,ol.order_date
"""
return pd.read_sql(sql, db.engine())
@ -67,6 +93,7 @@ def cal_min_fee(raw_data: pd.DataFrame):
package_group = Package_group()
opCountry = OperateCountry(group['目的国'].iloc[0])
express_fee = 0
express_type=''
for index, row in group.iterrows():
# 计算一票一件
packages=Package_group()
@ -74,29 +101,37 @@ def cal_min_fee(raw_data: pd.DataFrame):
packages.add_package(package)
bill_express = Billing("1",opCountry,packages,row['postcode'],company_name=None,head_type=1,beizhu="")
if bill_express.tail_amount[0] == 0 or bill_express.tail_amount[0] >=9999:
df.loc[index,"快递尾端费用"] = "不可派"
df.loc[index,"单票最小费用"] = ""
df.loc[index,"单票渠道"] = ""
express_fee = 999999
express_type = '不可派'
else:
df.loc[index,"快递尾端费用"] = bill_express.tail_amount[0]
df.loc[index,"快递尾端渠道"] = bill_express.company_name
df.loc[index,"单票最小费用"] = bill_express.tail_amount[0]
df.loc[index,"单票渠道"] = bill_express.company_name
express_fee += bill_express.tail_amount[0]
express_type = bill_express.logistic_type
if bill_express.logistic_type == '卡派':
express_type = '卡派单包裹'
# 计算一票多件
package_group.add_package(package)
# 计算一票多件
if len(package_group) > 1:
bill_ltl = Billing("1",opCountry,package_group,row['postcode'],company_name=None,head_type=1,beizhu="")
df.loc[df['order_id']==order_id,'卡派尾端费用'] = bill_ltl.tail_amount[0]/len(package_group)
df.loc[df['order_id']==order_id,'卡派尾端渠道'] = bill_ltl.company_name
if bill_ltl.tail_amount[0] == 0 or bill_ltl.tail_amount[0] >=9999:
df.loc[df['order_id']==order_id,'多票最小费用'] = ""
df.loc[df['order_id']==order_id,'多票渠道'] = "不可派"
df.loc[df['order_id']==order_id,'多票最小费用'] = bill_ltl.tail_amount[0]/len(package_group)
df.loc[df['order_id']==order_id,'多票渠道'] = bill_ltl.company_name
min_fee = min(bill_ltl.tail_amount[0],express_fee)
df.loc[df['order_id']==order_id,'最优总费用'] = min_fee
df.loc[df['order_id']==order_id,'最优渠道类型'] = bill_ltl.logistic_type if min_fee == bill_ltl.tail_amount[0] else express_type
else:
min_fee = express_fee
if min_fee == express_fee:
df.loc[df['order_id']==order_id,'最优总物流费用'] = min_fee
df.loc[df['order_id']==order_id,'最优渠道类型'] = "快递"
else:
df.loc[df['order_id']==order_id,'最优总物流费用'] = min_fee
df.loc[df['order_id']==order_id,'最优渠道类型'] = "卡派"
df.loc[df['order_id']==order_id,'尾端货币'] = bill_ltl.tail_amount[1]
df.loc[df['order_id']==order_id,'最优总费用'] = min_fee
df.loc[df['order_id']==order_id,'最优渠道类型'] = express_type
df.loc[df['order_id']==order_id,'尾端货币'] = bill_express.tail_amount[1]
return df
# 订单层面审核防止出现混合渠道投递卡派订单包含多个不同快递单号多渠道订单总重量小于1000KG
@ -113,7 +148,7 @@ def analyze_orders(raw_data: pd.DataFrame):
'渠道类型': '未知类型',
'基础估算': 0,
'偶发估算': 0,
'总估算': 0,
'包裹总估算': 0,
'重量': 0,
'': 0,
'': 0,
@ -137,16 +172,19 @@ def analyze_orders(raw_data: pd.DataFrame):
grouped = data.groupby('order_id')
aggregated = pd.DataFrame({
'订单时间': grouped['order_date'].first(),
'最晚投递时间': grouped['投递时间'].max(),
'包裹数量': grouped.size(),
'总重量': grouped['重量'].sum(),
'总基础估算': grouped['基础估算'].sum(),
'总附加估算': grouped['偶发估算'].sum(),
'总物流估算': grouped['总估算'].sum(),
'订单总估算': grouped['包裹总估算'].sum(),
'包裹数据': grouped.apply(create_package_details), # 使用新函数
'快递公司列表': grouped['快递公司'].unique(),
'投递渠道列表': grouped['投递渠道'].unique(),
'渠道类型列表': grouped['渠道类型'].unique(),
'邮编列表': grouped['postcode'].first(),
'快递跟踪号': grouped['快递跟踪号'].unique()
'快递跟踪号': grouped['快递跟踪号'].unique(),
'最优渠道推荐':grouped['最优渠道'].first(),
'最优渠道类型':grouped['最优渠道类型'].first(),
'最优总费用':grouped['最优总费用'].first(),
'费用差(RMB)':grouped['费用差(RMB)'].first(),
}).reset_index()
# 3. 实现业务逻辑判断(保持不变)
@ -159,7 +197,7 @@ def analyze_orders(raw_data: pd.DataFrame):
return '未知类型'
def determine_channel_type(row):
if len(row['快递公司列表']) > 1:
if len(row['投递渠道列表']) > 1:
return '多渠道'
else:
return '单渠道'
@ -195,14 +233,14 @@ def analyze_orders(raw_data: pd.DataFrame):
rule_results = aggregated.apply(apply_business_rules, axis=1)
aggregated = pd.concat([aggregated, rule_results], axis=1)
aggregated['测算日期'] = date.today().strftime("%Y-%m-%d")
# 5. 整理最终输出列
final_columns = [
'order_id', '订单类型', '渠道种类',
'order_id','订单时间','最晚投递时间', '订单类型', '渠道种类','快递跟踪号',
'包裹数量', '总重量',
'总基础估算', '总附加估算', '总物流估算',
'快递公司列表', '邮编列表',
'包裹数据' ,'状态', '备注','快递跟踪号'# 使用新列名
'订单总估算',
'投递渠道列表',
'包裹数据' ,'状态', '备注','最优渠道推荐','最优总费用','费用差(RMB)','测算日期'# 使用新列名
]
return aggregated[final_columns]
@ -216,48 +254,130 @@ def analyze_logistics(df: pd.DataFrame):
# 1. 计算最优渠道和费用
df= cal_min_fee(df)
# 判断渠道是否一致
df['最优渠道'] = df.apply(lambda row: row['快递尾端渠道'] if row['最优渠道类型'] == "快递" else row['卡派尾端渠道'], axis=1)
df['渠道一致'] = df.apply(lambda row: row['最优渠道'] == logistics_name.get(row['快递公司']), axis=1)
df['测算日期'] = date.today().strftime("%Y-%m-%d")
df['最优渠道'] = df.apply(lambda row: row['单票渠道'] if row['最优渠道类型'] == "快递" or row['最优渠道类型'] == "卡派单包裹" else row['多票渠道'], axis=1)
df['渠道一致'] = df.apply(lambda row: row['最优渠道'] == logistics_name.get(row['投递渠道']), axis=1)
# 2. 计算费用是否一致
def all_estimate(row):
if row['总估算'] is None or row['总估算'] ==0:
return "暂无系统估算值"
if row['最优总物流费用'] is None or row['最优总物流费用'] ==0:
return "暂无最优费用"
if row['尾端货币'] == "USD":
all_estimate= row['总估算']/7
elif row['尾端货币'] == "GBP":
all_estimate = row['总估算']/9
elif row['尾端货币'] == "EUR":
all_estimate = row['总估算']/8
elif row['尾端货币'] == "AUD":
all_estimate = row['总估算']/5
elif row['尾端货币'] == "CAD":
all_estimate = row['总估算']/5
elif row['尾端货币'] == "JPY":
all_estimate = row['总估算']/0.05
if row['最优总费用'] >=9999:
return "费用有误"
all_estimate = convert_currency(row['最优总费用'], row['尾端货币'])
return all_estimate
df['费用一致'] = df.apply(lambda row: False if isinstance(all_estimate(row), str) else abs(all_estimate(row) - row['最优总物流费用']) < 1,axis=1)
df['订单总估算']= df.groupby('order_id')['包裹总估算'].transform('sum')
df['费用一致'] = df.apply(lambda row: False if isinstance(all_estimate(row), str) else abs(all_estimate(row) - row['订单总估算']) < 1,axis=1)
df['费用差(当地货币)'] = df.apply(lambda row: "费用有误" if isinstance(all_estimate(row), str) else row['最优总物流费用'] - all_estimate(row),axis=1)
df['费用差(RMB)'] = df.apply(lambda row: "费用有误" if isinstance(all_estimate(row), str) else round( all_estimate(row)-row['订单总估算'],2),axis=1)
df['是否改投'] = df.apply(lambda row: "不改投" if row['渠道一致'] == True else 0,axis=1) # 渠道一致只检查费用问题无需改投0不确定需要人工确认
df['异常情况'] = None
# 调整输出列
final_columns = ['order_date','投递时间','fund_status','包裹状态','运输方式','快递跟踪号','目的国','postcode','快递分区','order_id','package','','','','重量',
'基础估算','偶发估算','包裹总估算','订单总估算','本地估算RMB','渠道类型','投递渠道','单票最小费用','单票渠道','多票最小费用','多票渠道','最优总费用',
'最优渠道','最优渠道类型','尾端货币','渠道一致','费用一致','费用差(RMB)','测算日期','是否改投','异常情况']
return df[final_columns]
# 系统渠道下的本地计算费用
def local_fee_cal(df: pd.DataFrame):
df_grouped= df.groupby('快递跟踪号')
for order_num, group in df_grouped:
postcode = group['postcode'].iloc[0]
if pd.isna(postcode) or str(postcode).lower() == "nan":
continue
packages= Package_group() # Metro-SAIR
company_name = logistics_name.get(group['投递渠道'].iloc[0])
opCountry = OperateCountry(group['目的国'].iloc[0])
total_weight=0 # 按体积重分费用
for index,row in group.iterrows():
if row[''] == 0 or row[''] == 0 or row[''] == 0 or row['重量'] == 0:
continue
total_weight = row['']*row['']*row['']/6000
package = Package(row['package'],row[''],row[''],row[''],row['重量'])
packages.add_package(package)
try:
bill = Billing(str(index),opCountry,packages,postcode,company_name=company_name,head_type=1,beizhu='1')
for index,row in group.iterrows():
propertion = bill.bill_dict()["体积重"]/total_weight
tail_fee = bill.tail_amount[0]*propertion
# 转rmb
tail_fee = convert_currency(tail_fee, bill.tail_amount[1])
df.loc[df['package']==row['package'],'本地估算RMB'] =round(tail_fee,2) if tail_fee <9999 else "暂无配置"
except:
df.loc[df['快递跟踪号'] == order_num, '本地估算RMB']= "暂无配置"
continue
print(bill)
return df
# 合并新旧df并写入
def append_result(new_data, excel_path, only_columns):
try:
df_existing = pd.read_excel(excel_path,dtype={'order_id': str})
except FileNotFoundError:
# 文件不存在就直接存
new_data.to_excel(excel_path, index=False)
return
# 识别老表里的特殊列
special_cols = [col for col in ['是否改投', '异常情况','是否处理'] if col in df_existing.columns]
# 新老合并先全部concat起来以便后面筛选
df_all = pd.concat([df_existing, new_data], ignore_index=True)
# 找出:重复的(即同时在新旧里都有的 only_columns 值)
duplicated_keys = set(df_existing[only_columns]) & set(new_data[only_columns])
# 1⃣ 对有重复的 key → 保留 旧表的特殊列 + 新表的其他列
if duplicated_keys:
duplicated_keys = list(duplicated_keys)
# 老表保留特殊列
old_part = df_existing[df_existing[only_columns].isin(duplicated_keys)][[only_columns] + special_cols]
# 新表保留除特殊列外的所有列
new_part = new_data[new_data[only_columns].isin(duplicated_keys)]
new_part_no_special = new_part.drop(columns=special_cols, errors='ignore')
# 合并
merged_part = new_part_no_special.merge(old_part, on=only_columns, how='left')
else:
merged_part = pd.DataFrame(columns=df_all.columns) # 空
# 2⃣ 对没有重复的 → 直接保留新表的完整行
unique_new_part = new_data[~new_data[only_columns].isin(duplicated_keys)]
# 3⃣ 把 老数据的全部 + 处理好的新数据拼起来
final_result = pd.concat([df_existing, merged_part, unique_new_part], ignore_index=True)
# 去重(以 only_columns 为唯一键,保留最后一次出现的)
final_result = final_result.drop_duplicates(subset=[only_columns], keep='last')
# 写回
final_result.to_excel(excel_path, index=False)
def main():
# 将前一天改投的数据保存到excel
# 1.先读取logistics_analysis并筛选是否改投列为1的数据
# 2.将筛选结果追加到另一个excel
df_new = pd.read_excel(r'D:\test\logistics\拦截数据\logistics_analysis.xlsx')
df_new = df_new [df_new ['是否改投'] == ""]
df_new = df_new[['目的国','运输方式','order_id','package','基础估算','偶发估算','包裹总估算',
'渠道类型','最优渠道类型','投递渠道','最优渠道','尾端货币','订单总估算','最优总费用','费用差(RMB)','测算日期','是否改投','异常情况']]
target_file1 = r'D:\test\logistics\拦截数据\改投记录表.xlsx'
append_result(df_new,target_file1,'package')
print("前一天的数据已保存")
# 获取数据
raw_data = fetch_order_data()
print('已获取数据')
# 订单层面审核
order_result = analyze_orders(raw_data)
print('已完成订单层面审核')
order_result.to_excel(r'D:\test\logistics\拦截数据\order_analysis.xlsx', index=False)
# 本地计算投递渠道的费用
order_result =local_fee_cal(raw_data)
# 计算最优渠道和费用
raw_data = analyze_logistics(raw_data)
target_file2 = r'D:\test\logistics\拦截数据\logistics_analysis.xlsx'
append_result(raw_data,target_file2,'package')
print('已完成物流费用层面审核')
raw_data.to_excel(r'D:\test\logistics\拦截数据\logistics_analysis.xlsx', index=False)
# 订单层面审核
order_result = analyze_orders(raw_data)
target_file3 = r'D:\test\logistics\拦截数据\order_analysis.xlsx'
append_result(order_result,target_file3,'order_id')
print('已完成订单层面审核')
if __name__ == '__main__':
main()
# 取数