14 KiB
14 KiB
取ERP采购价+ERP尺寸+实际尺寸,需要国家+条目+邮编+order_id
In [4]:
import pandas as pd from utils.gtools import MySQLconnect # 读取需要计算的包裹信息 with MySQLconnect('ads') as db: sql = r""" # 限制范围是测量时间,取得SKU种类为1且数量为1的订单,且重复SKU只取最近的订单 WITH t1 AS ( SELECT order_id, SKU, order_date, sum(CASE WHEN opl.order_product_id LIKE '%\_%' ESCAPE '\\' AND opl.order_product_id NOT LIKE '%\_%\_%' ESCAPE '\\' THEN product_num END) AS product_num, DATE_FORMAT(order_date,"%Y-%m-%d") AS 订单时间, count(opl.SKU) AS 产品种类 FROM dws.fact_order_product_list opl WHERE NOT EXISTS ( SELECT 1 FROM dws.log_order_reissue_detail AS r WHERE r.order_product_id = opl.order_product_id ) AND order_date >= "20250501" AND order_date < "20250612" AND SKU <> "" GROUP BY order_id ) , t2 AS ( SELECT a.`包裹测量时间`, t1.order_id, t1.SKU, t1.order_date, a.包裹号, a.快递公司, a.运输方式, a.`目的国`, d.postcode, CONCAT( '"', b.package, '": {', '"长": ', length, ', ', '"宽": ', width, ', ', '"高": ', hight, ', ', '"重量": ', weight, '}' ) AS package_json FROM t1 LEFT JOIN order_express a ON t1.order_id = a.单号 JOIN package_vol_info b ON a.`包裹号` = b.package JOIN order_list d ON a.`单号` = d.order_id WHERE a.`包裹状态` IN ( '客户签收', '已经投递') AND b.hight > 0 AND b.length > 0 AND b.width > 0 AND b.hight > 0 AND b.weight > 0 -- AND a.`目的国` = "United States" AND t1.product_num = 1 AND t1.产品种类=1 AND a.`包裹测量时间` >= '2025-05-01' AND a.`包裹测量时间` < '2025-06-12' ), t3 AS ( SELECT t2.*, sku.成本价 AS ERP采购价, ess.erp_package_vol AS ERP包裹数据, CONCAT('{', GROUP_CONCAT(package_json SEPARATOR ','), '}') AS 实际包裹数据, ROW_NUMBER() OVER (PARTITION BY SKU ORDER BY 包裹测量时间 DESC) as rn FROM t2 LEFT JOIN dwd.dim_erp_sku_package_vol_info ess ON t2.SKU=ess.erp_sku LEFT JOIN stg_bayshop_litfad_sku sku ON t2.SKU=sku.SKU WHERE ess.`erp_package_vol`<>"{}" AND ess.`erp_package_vol`<>"" GROUP BY order_id ) SELECT 包裹测量时间, order_id, SKU, DATE_FORMAT(order_date,"%Y-%M-%D") AS 订单时间, 包裹号, `快递公司`, `运输方式`, `目的国`, postcode, ERP采购价, ERP包裹数据, 实际包裹数据 FROM t3 WHERE rn=1 """ df=pd.read_sql("SELECT * FROM `order_complet4` WHERE buy_amount is not null and `实际尺寸售价` IS NULL limit 100",db.con)
C:\Users\joker\AppData\Local\Temp\ipykernel_34576\54471085.py:105: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.
df=pd.read_sql("SELECT * FROM `order_complet4` WHERE buy_amount is not null and `实际尺寸售价` IS NULL limit 100",db.con)
取实际采购价(当前已有ERP采购价+ERP尺寸+实际尺寸),输入:df['order_id'],输出:df['采购成本']
In [ ]:
from utils.gtools import MySQLconnect ods = MySQLconnect("ods") engine = ods.engine() cursor = ods.connect().cursor() batch_size = 50000 # 每次查询 500 个 order_id,避免 SQL 语句过长 order_id_list = df["order_id"].drop_duplicates().tolist() # 取出所有 order_id # df['postcode'] = "38016" # 存储分批查询的结果 result_dfs1 = [] result_dfs2 = [] for i in range(0, len(order_id_list), batch_size): batch_order_ids = order_id_list[i:i + batch_size] # 取当前批次的 order_id param = ",".join(f"'{order_id}'" for order_id in batch_order_ids) purchase_order_sql = f""" WITH t1 AS ( SELECT LEFT(ol.out_detials_outlink_id, 15) AS order_id, SUM(out_detials_qty * price) AS instock_cost, NULL AS buy_cost FROM ods.outstock_list ol JOIN ods.instock_list il ON ol.store_in_id = il.id WHERE LEFT(ol.out_detials_outlink_id, 15) IN ({param}) GROUP BY LEFT(ol.out_detials_outlink_id, 15) UNION ALL SELECT LEFT(order_product_id, 15) AS order_id, NULL AS instock_cost, SUM(buy_num * actual_price) AS buy_cost FROM warehouse_purchasing WHERE LEFT(order_product_id, 15) IN ({param}) AND buy_audit = "采购完成" GROUP BY LEFT(order_product_id, 15) ) SELECT order_id, SUM(CASE WHEN instock_cost IS NULL THEN buy_cost ELSE instock_cost END) AS 采购成本 FROM t1 GROUP BY order_id """ batch_df1 = pd.read_sql(purchase_order_sql, con=engine) # 运行 SQL 查询 result_dfs1.append(batch_df1) # 存入结果列表 print(f"已完成 {i + batch_size} 个 order_id 的查询") # 合并所有查询结果 purchase_order_df1 = pd.concat(result_dfs1, ignore_index=True) purchase_order_df1["order_id"] = purchase_order_df1["order_id"].astype(str) # 转换数据类型,确保匹配 df["order_id"] = df["order_id"].astype(str) # 进行合并 df = pd.merge(df, purchase_order_df1, on='order_id', how='left') # 复制到剪贴板 df.to_clipboard(index=False)
计算标准网站售价,输入尺寸,输出售价和订单物流费
In [3]:
def call_sell_price(price, package_dict,head_type="海运"): import json from sell.sell_price import call_sell_and_order_price try: package_dict = json.loads(package_dict) all_sell_price, order_price, order_type = call_sell_and_order_price(price, package_dict,head_type) except Exception as e: print(f" 报错: {e}") return ("","","") if all_sell_price == 0: return ("","","") sell_price= all_sell_price # logis_price = all_sell_price[1] return (sell_price, order_price, order_type) # 计算当前售价 for index,row in df.iterrows(): price = row['buy_amount'] # package_dict = json.loads(row['erp_package_vol']) sell_price = call_sell_price(price, row['package_json'],"海运") print(sell_price) df.loc[index,'网站售价'] = sell_price[0] df.loc[index,'订单物流费'] = sell_price[1] df.loc[index,'尾端类型'] = sell_price[2] print(f"SKU: {row['sku']} 网站售价: {sell_price[0]} 订单物流费: {sell_price[1]} 尾端类型: {sell_price[2]}") df.to_clipboard(index=False)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Cell In[3], line 16 14 return (sell_price, order_price, order_type) 15 # 计算当前售价 ---> 16 for index,row in df.iterrows(): 17 price = row['buy_amount'] 18 # package_dict = json.loads(row['erp_package_vol']) NameError: name 'df' is not defined
In [3]:
df.to_clipboard()
计算实际渠道物流费用
In [ ]:
from utils.countryOperator import OperateCountry from utils.logisticsBill import BillFactory from utils.Package import Package, Package_group import pandas as pd import json import re # 美国 from utils.logisticsBill import Billing import requests for index, row in df.iterrows(): opCountry = OperateCountry('US') postcode = row['postcode'] if pd.isna(postcode) or str(postcode).lower() == "nan": continue try: package_dict = json.loads(row['实际包裹数据']) except Exception as e: print(f"行 {index} 解析失败: {e}") print(row['实际包裹数据']) continue packages = Package_group() def extract_number(value): # 提取字符串中的第一个数字 match = re.search(r"[-+]?\d*\.\d+|\d+", str(value)) return float(match.group()) if match else 0.0 for key, package in package_dict.items(): package['长'] = extract_number(package['长']) package['宽'] = extract_number(package['宽']) package['高'] = extract_number(package['高']) package['重量'] = extract_number(package['重量']) if package['长'] == 0 or package['宽'] == 0 or package['高'] == 0 or package['重量'] == 0: continue packages.add_package(Package(key,package['长'], package['宽'], package['高'], package['重量'])) if packages is None: continue if "海运" in row['运输方式']: head_type = 1 else: head_type = 0 # if "FEDEX-SAIR-G" in row['快递公司']: # company_name = "Fedex-GROUD" # elif "FEDEX-SAIR-H" in row['快递公司']: # company_name = "Fedex-HOME" # elif "FEDEX02" in row['快递公司']: # company_name = "Fedex-彩虹小马" # elif "大包" in row['快递公司'] or row['快递公司'] == '海MS-FEDEX': # company_name = "Fedex-金宏亚" # elif "GIGA" in row['快递公司']: # company_name = "大健-GIGA" # elif "CEVA" in row['快递公司']: # company_name = "大健-CEVA" # elif "USPS" in row['快递公司']: # company_name = "Fedex-GROUD" # else: # company_name = "大健-Metro" bill = Billing(str(index),opCountry,packages,postcode,company_name="Fedex-GROUD",head_type=head_type,beizhu='1') head_price = bill.head_amount[0] tail_price = bill.tail_amount[0] if "USPS" in row['快递公司']: tail_price = tail_price/2 # df.loc[index,'头程CNY'] = head_price df.loc[index,'头程CNY'] = head_price # df.loc[index,'最优渠道'] = bill.company_name print(f"行 {index} 处理完成") df.to_clipboard(index=False)
In [ ]:
from utils.gtools import MySQLconnect import pandas as pd df = pd.read_clipboard() log = MySQLconnect('logistics') pd.io.sql.to_sql(df, 'table_name', con=log.engine(), if_exists='replace', index=False)