logistics/test.ipynb

48 KiB
Raw Blame History

In [ ]:
from utils.gtools import MySQLconnect
import pandas as pd
import numpy as np
In [ ]:
import tqdm
from utils.gtools import MySQLconnect
import pandas as pd
import numpy as np
import pickle
import os
# 读取csv文件
csv_file  = r"F:\DOCUMENTS\WXWork\1688854527635889\Cache\File\2025-03\Litfad产品点击数据 (26).csv"
print("读取csv文件...")
df1 = pd.read_csv(csv_file, skiprows=2)
max_len = len(df1)
batch_size = 500000
df1 = df1.rename(columns={"产品 ID": "psid"})
print("csv文件读取完毕")
for j in range(0, (max_len // batch_size) + 1):
    print(f"正在处理第{j}批数据...")
    start_idx = j * batch_size
    end_idx = start_idx + batch_size
    
    batch_df = df1.iloc[start_idx:end_idx]  # 获取每一批数据

    with MySQLconnect("ods") as db:
        conn = db.connect()
        cursor = conn.cursor()
        if not os.path.exists(f"spu_data{j}.csv"):
            for i,row in batch_df.iterrows():
                psid = row["psid"].split("sku")[1] if "sku" in row["psid"] else row["psid"]  # 产品PSID
                show_count = row["展示次数"]
                click_count = row["点击次数"]
                sql = rf"""SELECT SPU,DATE_FORMAT(spu.添加时间, '%Y-%m') AS 年月
                        FROM stg_bayshop_litfad_sku sku
                        left JOIN stg_bayshop_litfad_spu spu ON sku.`产品PID` =spu.`产品PID`
                        WHERE `产品PSID`  = '{psid}' 
                        """
                cursor.execute(sql)
                result = cursor.fetchone()
                if result:
                    year_month = result[0]
                    spu = result[1]
                else:
                    continue
                # df1新增一列保存这个年月
                batch_df.loc[i,"年月"] = year_month
                batch_df.loc[i,"SPU"] = spu
            batch_df.to_csv(f"spu_data{j}.csv", index=False, encoding="utf-8-sig")
        else:
            batch_df = pd.read_csv(f"spu_data{j}.csv")
    batch_df["展示次数"] = pd.to_numeric(batch_df["展示次数"], errors='coerce')
    batch_df["点击次数"] = pd.to_numeric(batch_df["点击次数"], errors='coerce')
    result1 = batch_df.groupby("年月").agg(
        年月 = ("年月", "first"),
        SPU = ("SPU", "first"),
        展示总次数 = ("展示次数", "sum"),
        点击总次数 = ("点击次数", "sum"))


    result = result1.groupby("SPU").agg(
                展示大于0点击为0数量=("年月", lambda x: ((result1.loc[x.index, "展示总次数"] > 0) & (result1.loc[x.index, "点击总次数"] == 0)).sum()),
                点击大于0数量=("年月", lambda x: (result1.loc[x.index, "点击总次数"] > 0).sum()),
                展示为0数量=("年月", lambda x: (result1.loc[x.index, "展示总次数"] == 0).sum())
            ).reset_index()


    result.to_csv(f"spu_statistics{j}.csv", index=False, encoding="utf-8-sig")

# 最后读取所有批次的统计数据并合并(相加)
all_result = pd.DataFrame()
for j in range(0, (max_len // batch_size) + 1):
    result = pd.read_csv(f"spu_statistics{j}.csv")
    # 以年月为组,其他数据各批次相加
    if all_result.empty:
        all_result = result
    else:
        all_result = pd.merge(all_result, result, on="SPU", how="outer", suffixes=('', '_new'))
        all_result = all_result.groupby("SPU").sum().reset_index()
all_result.to_csv("all_spu_statistics.csv", index=False, encoding="utf-8-sig")
In [ ]:
from utils.gtools import MySQLconnect
import pandas as pd
df=pd.read_excel(r"F:\DOCUMENTS\WXWork\1688854527635889\Cache\File\2025-03\导出订单维护任务数据2025-3-20.xlsx",sheet_name="导出订单维护任务数据2025-3-20")
df['订单数量'] = df['订单数量'].astype(str)
df = df[df['订单数量'].str.len() > 0]
df['订单数量'] = df['订单数量'].astype(float)
df = df[df['订单数量']>0]
df=df[['erp sku','订单号']]
In [ ]:
with MySQLconnect("ods") as db:
    engine = db.engine()
    conn = db.connect()
    cursor = conn.cursor()
    df_group = df.groupby('erp sku')
    for sku, group in df_group:
        for index,row in group.iterrows():
            order_id_list = group["订单号"].tolist()
            param = ",".join(f"'{order_id}'" for order_id in order_id_list)
        sql = f"""
            SELECT
            SKU,
            sum(as_value_amount) AS 销售额,
            sum(product_num) AS 产品数量,
            count(order_id) AS 订单数量,
            date_format(MAX(order_date), '%%Y-%%m-%%d') AS 最后一次订单日期
            FROM
            dws.fact_order_product_list
            WHERE
            SKU = {sku}
            AND order_id not IN ({param})
            group by SKU
        """
        amount_df = pd.read_sql(sql, con=engine)
        if amount_df.empty:
            amount = 0
            product_num = 0
            order_num = 0
            last_order_date = None
        else:
            amount = amount_df["销售额"].values[0]
            product_num = amount_df["产品数量"].values[0]
            order_num = amount_df["订单数量"].values[0]
            last_order_date = amount_df["最后一次订单日期"].values[0]
        df.loc[df["erp sku"] == sku, "不含此次总销售额"] = amount
        df.loc[df["erp sku"] == sku, "产品数量"] = product_num
        df.loc[df["erp sku"] == sku, "订单数量"] = order_num
        df.loc[df["erp sku"] == sku, "最后一次订单日期"] = last_order_date
        print(f"{sku}的销售额为{amount}, 产品数量为{product_num}, 订单数量为{order_num}, 最后一次订单日期为{last_order_date}")

df = df.drop_duplicates(subset=["erp sku", "订单号"], keep="last")
df.to_clipboard(index=False)
In [ ]:
from utils.countryOperator import OperateCountry
from utils.logisticsBill import BillFactory
from utils.Package import Package, Package_group
import pandas as pd
from utils.gtools import MySQLconnect
# 美国 
from utils.logisticsBill import Billing
ods = MySQLconnect('ods')
cursor = ods.connect().cursor()
df = pd.read_excel(r'F:\DOCUMENTS\WXWork\1688854527635889\Cache\File\2025-04\Litfad 4-10-25 with data analysis-2(1).xlsx',
                   sheet_name='NJ-96004848')
df_grouped= df.groupby('TRACKING#')
calculated_results = []
package_list = ",".join(str(item) for item in df['ORDER#'].tolist())
print(package_list)
query = f"SELECT package,length,width,hight,weight FROM `package_vol_info` WHERE `package` IN ({package_list})"
result = cursor.execute(query)
packages_info = cursor.fetchall()
print(packages_info)
# 将df和result合并
new_df = pd.DataFrame(packages_info, columns=['package', 'length', 'width', 'hight', 'weight'])
df = df.merge(new_df, left_on='ORDER#', right_on='package')
df = df.drop(columns='package')


for order_num, group in df_grouped:
    # opCountry = OperateCountry(group['目的国'].iloc[0])
    opCountry = OperateCountry('US')
    postcode = group['ZIPCODE'].iloc[0]
    packages= Package_group()
    packages_dict = {}
    volume_weight = 0
    weight = 0
    for index,row in group.iterrows():
        length = float(row['L*H*W(CM)'].split('*')[0])
        width = float(row['L*H*W(CM)'].split('*')[1])
        hight = float(row['L*H*W(CM)'].split('*')[2])
        weight = row['WEIGHT']
        package = Package(row['ORDER#'],length,width,hight,weight)
        packages.add_package(package)
        # packages_dict[row['包裹号']] = {
        #     "长": row['长'],
        #     "宽": row['宽'],
        #     "高": row['高'],
        #     "重量": row['重量']
        # }
        # weight += row['重量']/1000
        # volume_weight += package.get_volume_weight(6000)
        # postcode = row['postcode']
        # head_type = 1 if row['运输方式'] == '海运' else 0
    try:
        bill1 = Billing(str(index),opCountry,packages,postcode,company_name='大健-Metro',head_type=1,beizhu='1')
        tail_price1 = bill1.tail_amount[0]
    except:
        tail_price1 = '出错'
    try:
        bill2 = Billing(str(index),opCountry,packages,postcode,company_name='大健-CEVA',head_type=1,beizhu='1')
        tail_price2 = bill2.tail_amount[0]
    except:
        tail_price2 = '出错'
    try:
        bill3 = Billing(str(index),opCountry,packages,postcode,company_name='大健-GIGA',head_type=1,beizhu='1')
        tail_price3 = bill3.tail_amount[0]
    except:
        tail_price3 = '出错'
    
    result = {
        'TRACKING#': order_num,
        '大健-MATRO': tail_price1,# Same for all rows in the group
        '大健-CEVA':tail_price2,
        '大健-GIGA':tail_price3,
    }
    print(result)
    calculated_results.append(result)
    # print(packages_dict)
calculated_df = pd.DataFrame(calculated_results)
# 将calculated_df的订单号改为order_id
# calculated_df.rename(columns={'订单号':'order_id'},inplace=True)
calculated_df
In [ ]:
# 取表格数据is_first为1的数据取spu,长宽高重量系数
import pandas as pd
df = pd.read_excel(r'D:\test\logistics\拦截数据\一票一件发货订单.xlsx',sheet_name="单包裹系数计算")
# 写一个cal_size算法输入原属性和新属性返回涨幅系数
df=df[['is_first','SPU','SKU','长','宽','高','重量']]
base_df = df[df['is_first']==1]
In [ ]:
# 取这些SPU下的所有SKU及其现在售价
from sell.sell_price import call_sell_and_order_price
import json
from utils.gtools import MySQLconnect
import pandas as pd
spu_list = (
    base_df['SPU']
    .apply(pd.to_numeric, errors='coerce')  # 转数字,非法的变 NaN
    .dropna()
    .astype(int)
    .astype(str)
    .tolist()
)
placeholders = ','.join(['%s'] * len(spu_list)) 
# result = []
with MySQLconnect('ods') as db:
    enginal = db.engine()
    sql = f"""SELECT
    产品品类,
    产品分类,
        SPU,
        sku.SKU,
        sku.`成本价`,
        spi.`包裹数据`,
        物流分摊,
        产品售价
    FROM
        stg_bayshop_litfad_sku sku
        LEFT JOIN stg_bayshop_litfad_spu spu ON sku.`产品PID` = spu.`产品PID` 
        LEFT JOIN ads.new_erp_sku_size spi ON sku.SKU =spi.SKU
    WHERE
        spu.SPU IN ({placeholders}) 
        """
    result = pd.read_sql(sql, enginal,params= tuple(spu_list))
# 合并df
all_df = pd.merge(result,df, on=['SPU','SKU'], how='left')
all_df.head()
In [ ]:
import pandas as pd
from utils.gtools import MySQLconnect

# 读取需要计算的包裹信息
with MySQLconnect('ods') as db:
    sql = r"""  
SELECT
DATE_FORMAT(order_date,'%Y-%m') AS 月份,
order_id,
order_date,
opl.SKU,
CASE WHEN opl.order_product_id LIKE '%\_%' ESCAPE '\\' 
         AND opl.order_product_id NOT LIKE '%\_%\_%' ESCAPE '\\' THEN product_num END AS product_num,
DATE_FORMAT(order_date,"%Y-%m-%d") AS 订单时间,

sku.`产品售价`*product_num AS erp售价,
sku.成本价*product_num AS erp采购价,
spvi.erp_package_vol

FROM
dws.fact_order_product_list opl
LEFT JOIN stg_bayshop_litfad_sku sku ON opl.SKU = sku.SKU
LEFT JOIN dwd.dim_erp_sku_package_vol_info spvi ON opl.SKU = spvi.erp_sku
WHERE
order_date >= "20240601"
AND order_date < "20250701"
AND opl.SKU <> ""
AND opl.order_product_id NOT LIKE '%\_%\_%' ESCAPE '\\'
GROUP BY order_id,SKU
    """
    df=pd.read_sql(sql,db.con)
    # print(df)
    # df.to_clipboard(index=False)
df
In [ ]:
import re
import json
import pandas as pd

def extract_number(value):
    match = re.search(r"[-+]?\d*\.\d+|\d+", str(value))
    return float(match.group()) if match else 0.0

def calc_volume(row):
    try:
        package_json = str(row['erp_package_vol'])
        if not package_json.startswith('{'):
            return 0.0
        package_dict = json.loads(package_json)
        total_volume = 0.0
        # product_num是seri
        try:
            num = int(row['product_num'])
        except:
            num = 0
        for package in package_dict.values():
            l = extract_number(package.get('长', 0))
            w = extract_number(package.get('宽', 0))
            h = extract_number(package.get('高', 0))
            total_volume += l * w * h * num
        return total_volume
    except Exception as e:
        print(f"错行:{row}\n错误:{e}")
        return 0.0

# 计算体积
df['体积'] = df.apply(calc_volume, axis=1)

# order_id聚合,除了 月份,order_id,order_date,保留第一行,其他售价,采购价,体积求和
df_agg = df.groupby(['order_id']).agg({
    '月份': 'first', 
    'order_id': 'first', 
    'order_date': 'first', 
    '订单时间': 'first', 
    'erp售价': 'sum', 
    'erp采购价': 'sum', 
    '体积': 'sum'
    })
In [ ]:
df.to_clipboard(index=False)
In [ ]:

In [ ]:
# 先把ERP包裹数据拆出来
import re
import json
for index, row in all_df.iterrows():
    if not isinstance(row['包裹数据'], str) or not row['包裹数据']:
        print(f"第{index}行包裹数据为空或非字符串,跳过")
        continue
    try:
        package_dict = json.loads(row['包裹数据'])
    except json.JSONDecodeError as e:
        print(f"解析失败:第{index}行,错误信息:{e}")
        continue
    try:
        for package in package_dict.values():
            item = {}
            for key, value in package.items():
                try:
                    # 使用正则表达式提取数字部分
                    number_str = re.findall(r"[-+]?\d*\.\d+|\d+", str(value))
                    if number_str:
                        item[key] = float(number_str[0])  # 取第一个匹配到的数字并转换为 float
                    else:
                        item[key] = value  # 如果没有数字部分,保留原值
                except ValueError:
                    item[key] = value  # 如果遇到无法转换的值,保留原值
    except AttributeError:
        print(f"解析失败:第{index}行,错误信息:包裹数据为空")
        continue
    size = []
    size.append(item['长'])
    size.append(item['宽'])
    size.append(item['高'])
    weight = item['重量']
    size.sort()
    length = size[2]
    width = size[1]
    height = size[0]
    all_df.loc[index, 'ERP长'] = length
    all_df.loc[index, 'ERP宽'] = width
    all_df.loc[index, 'ERP高'] = height
    all_df.loc[index, 'ERP重量'] = weight
    print(f"{row['SKU']}尺寸为:{width},h:{height},d:{length},w:{weight}")
In [ ]:
# 计算每个SPU的长宽高重量系数
def cal_size(old,new):
    try:
        old = float(old)
        new = float(new)
        if old == 0:
            return None  # 或 return 0防止除以0
        return (new - old) / old
    except (ValueError, TypeError):
        return None  # 遇到不能转为 float 的就返回 None
    
test_df = all_df[all_df['is_first']==1]
# 取基准数据SPU的系数
for index, row in test_df.iterrows():
    test_df.loc[index, '长系数'] = cal_size(row['ERP长'],row['长'])
    test_df.loc[index, '宽系数'] = cal_size(row['ERP宽'],row['宽'])
    test_df.loc[index, '高系数'] = cal_size(row['ERP高'],row['高'])
    test_df.loc[index, '重量系数'] = cal_size(row['ERP重量'],row['重量'])
    print(
        f"{row['SPU']} 的系数为 "
        f"{test_df.loc[index, '长系数']}, "
        f"{test_df.loc[index, '宽系数']}, "
        f"{test_df.loc[index, '高系数']}, "
        f"{test_df.loc[index, '重量系数']}"
    )
# 将SPU的基准系数合并至all_df
all_df = pd.merge(all_df, test_df[['SPU', '长系数', '宽系数', '高系数', '重量系数']], on='SPU', how='left')
all_df.to_excel('单包裹SKU售价分析.xlsx', index=False)
In [ ]:
import pandas as pd
all_df = pd.read_excel('单包裹SKU售价分析.xlsx')

# 根据系数 得到所有SKU的预测尺寸
# 根据系数计算每个SKU的理论尺寸
all_df['理论长'] = ((1 + all_df['长系数']) * all_df['ERP长']).round(2)
all_df['理论宽'] = ((1 + all_df['宽系数']) * all_df['ERP宽']).round(2)
all_df['理论高'] = ((1 + all_df['高系数']) * all_df['ERP高']).round(2)
all_df['理论重量'] = ((1 + all_df['重量系数']) * all_df['ERP重量']).round(2)

# 计算三种尺寸下的售价
# 计算预测后的尺寸下,一票一件订单的售价和订单价格
from sell.sell_price import call_sell_and_order_price
for index,row in all_df.iterrows():
    price = row['成本价']
    package_dict1={}
    package_dict2={}
    package_dict3={}
    try:
        package_dict1['包裹1'] = {}
        package_dict2['包裹1'] = {}
        package_dict3['包裹1'] = {}
        package_dict1['包裹1']['长'] = row['长']
        package_dict1['包裹1']['宽'] = row['宽']
        package_dict1['包裹1']['高'] = row['高']
        package_dict1['包裹1']['重量'] = row['重量']
        package_dict2['包裹1']['长'] = row['理论长']
        package_dict2['包裹1']['宽'] = row['理论宽']    
        package_dict2['包裹1']['高'] = row['理论高']
        package_dict2['包裹1']['重量'] = row['理论重量']
        package_dict3['包裹1']['长'] = row['ERP长']
        package_dict3['包裹1']['宽'] = row['ERP宽']    
        package_dict3['包裹1']['高'] = row['ERP高']
        package_dict3['包裹1']['重量'] = row['ERP重量']
        sell_price1, order_price1, order_type1 = call_sell_and_order_price(price, package_dict1)
        sell_price2, order_price2, order_type2 = call_sell_and_order_price(price, package_dict2)
        sell_price3, order_price3, order_type3 = call_sell_and_order_price(price, package_dict3)
    except Exception as e:
        print(f"SKU: {row['SKU']} 报错: {e}")
        continue
    all_df.loc[index, 'ERP售价'] = sell_price3
    all_df.loc[index, '实际体积售价'] = sell_price1
    all_df.loc[index, '理论体积售价'] = sell_price2

    all_df.loc[index, 'ERP订单价'] = order_price3
    all_df.loc[index, '实际体积订单价'] = order_price1
    all_df.loc[index, '理论体积订单价'] = order_price2
    # all_df.loc[index, '理论体积订单类型'] = order_type2
    print(f"SPU: {row['SPU']}, SKU {row['SKU']} ,网站售价: {row['产品售价']}, ERP售价: {sell_price3}, 实际体积售价: {sell_price1}, 理论体积售价: {sell_price2},")
all_df.to_excel('单包裹SKU售价分析.xlsx', index=False)
In [ ]:
import pandas as pd
all_df = pd.read_excel('单包裹SKU售价分析1.xlsx',sheet_name="Sheet1")
all_df
In [ ]:
all_df = all_df[(all_df['是否有过修改记录']=="否")&(all_df['使用尺寸售价']!="ERP售价")]
all_df['SPU最大涨幅']=all_df.groupby('SPU')['售价涨跌幅'].transform(max)
all_df['SPU最小涨幅']=all_df.groupby('SPU')['售价涨跌幅'].transform(min)

filtered_df = all_df[(all_df['SPU最大涨幅'] <= 0.5) & (all_df['SPU最小涨幅'] >= -0.5)]
for index,row in filtered_df.iterrows():
    if row['使用尺寸售价']=="实际体积售价":
        length = str(row['长'])
        width = str(row['宽'])
        height = str(row['高'])
        weight = str(row['重量'])
    else:
        length = str(row['理论长'])
        width = str(row['理论宽'])
        height = str(row['理论高'])
        weight = str(row['理论重量'])
    filtered_df.loc[index, '尺寸重量'] = f"{weight}|{length}*{width}*{height}*1,"

    print(index)
spu_list = filtered_df['SPU'].unique()
filtered_df = filtered_df[['SKU','成本价','尺寸重量']]
filtered_df
In [ ]:
filtered_df.to_excel("product_property_data.xlsx")
In [ ]:
import pandas as pd
df=pd.read_clipboard()
In [ ]:
D, E, F = [], [], []
temp_sum = 0

for i in range(len(df)):
    temp_sum += df.loc[i, '未售出']
    if df.loc[i, '已售出'] != 0:
        D.append(df.loc[i, '价格'])
        E.append(temp_sum)
        F.append(df.loc[i, '已售出'])
        temp_sum = 0  # 重置

# 结果
result = pd.DataFrame({'D': D, 'E': E, 'F': F})
result.to_clipboard(index=False)
In [ ]:
def uk_package(packages_real):
    try:
        packages = json.loads(packages_real)
        p_num = len(packages)
        volume_weight_total = 0
        for key,package in packages.items():
            side_list = [float(i) for i in [package["长"], package["宽"], package["高"]]]
            side_list.sort(reverse=True)
            volume_weight = side_list[0] * side_list[1] * side_list[2]/6000
            volume_weight_total += volume_weight
            express_type =  "快递"
            girth = side_list[0]  + side_list[1] * 2 + side_list[2] * 2


            if side_list[0] > 300 or side_list[1] > 180  or int(package["重量"]) >= 150000   or volume_weight >95000 :
                express_type  = "卡派"
                break
            if side_list[0] > 175   or girth > 339 or   int(package["重量"]) >= 40000 :
                express_type = "大件"  if express_type != "卡派" else "卡派"
            elif side_list[0] > 100 or side_list[0] > 60 or   int(package["重量"]) >= 30000 :
                express_type = "快递超长"   if express_type == "快递超长" or express_type == "快递" else  express_type
            else :
                express_type = "快递"   if express_type == "快递" else  express_type

        return pd.Series({"尾端物流类型":express_type})
    except Exception as e:
        print(e)
        return pd.Series({"尾端物流类型":"未知"})
In [ ]:
def order_freight_price(packages_real,express_type):
     try:
          packages = json.loads(packages_real)
          p_num = len(packages)
          volume_weight_total = 0
          express_fee = 0
          if express_type == "卡派":
               express_fee = 55
          else :
               for key,package in packages.items():
                    side_list = [float(i) for i in [package["长"], package["宽"], package["高"]]]
                    side_list.sort(reverse=True)
                    volume_weight = side_list[0] * side_list[1] * side_list[2]/6000
                    volume_weight_total += volume_weight
                    girth = side_list[0]  + side_list[1] * 2 + side_list[2] * 2
                    if int(package["重量"]) <=5000 :
                         express_fee = max(express_fee,4.99)
                    elif  int(package["重量"]) <=10000 :
                         express_fee =  max(express_fee,6.99)
                    elif  int(package["重量"]) <=20000 :
                         express_fee =  max(express_fee,9.99)
                    else :
                         express_fee =  max(express_fee,14.99)

                    if side_list[0] > 175   or  int(package["重量"]) >= 30000:
                         express_fee =  max(express_fee,19.99)
                    elif side_list[0] > 120 :
                         express_fee = max(express_fee,14.99)


          return pd.Series({"订单尾端费用":express_fee})
     except:
          return pd.Series({"订单尾端费用":0})
In [ ]:
import pandas as pd
import re
df=pd.read_clipboard()
def clean_data(row):
    #250221074014717&250222211202474&250222215014600&	250227073002821
    #提取它的数字部分,使用正则提取
    pattern = re.compile(r'\d+')
    numbers = re.findall(pattern, str(row))
    lenth = len(numbers)
    return pd.Series([lenth, numbers])

df[['单数', '号码']] = df['订单号'].apply(clean_data)
In [ ]:
new_rows = []

for index, row in df.iterrows():
    print(index)
    if row['单数'] == 0:
        new_rows.append({**row, 'order_id': j,'单号长': 0})
    else:
        for j in row['号码']:
            if len(j)==7 or left(j,3)=='25':
                new_rows.append({**row, 'order_id': j,'单号长': len(j)})

            

new_df = pd.DataFrame(new_rows)
new_df
In [ ]:
# new_df的order_id列中有重复的订单号需要去重按照创建日期排序保留创建日期最早的那个
new_df = new_df.sort_values(by=['工单号'])
new_df = new_df.drop_duplicates(subset=['order_id'], keep='first')
new_df.to_clipboard(index=False)
new_df
In [2]:
from openai import OpenAI

text = "超短,完全小白,讲板块情绪,擅长找出各板块的绝对核心"
client = OpenAI(
        api_key="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"
    )
conversation_object = client.conversations.create(

)
history = []
print(conversation_object)  
response = client.responses.create(
    conversation = 'conv_6926bdf9368c8195abbb9530da3abc200d904bb0cb286f5a',
    model="gpt-5.1",
    input=text
)

print(response.output_text)
history.append((response.output_text))
Conversation(id='conv_6926c33b9c988194acabfd4ad198556e002f691818f05aa5', created_at=1764148027, metadata={}, object='conversation')
按你这三个关键词来设计:  
- 风格:超短  
- 受众:完全小白  
- 卖点:板块情绪 + 找“绝对核心龙头”

直接给你一套可落地的抖音账号方案。

---

## 一、先把你的人设一句话写清楚

你现在的信息翻译一下:  
> 做超短线,不和你讲复杂技术,专门给你看板块情绪,告诉你谁是龙头。

可以这样写成一句定位(任选/微调):

1. 「超短情绪交易|只讲板块和龙头,不讲废话」  
2. 「A股超短情绪分析带你看懂板块核心龙头」  
3. 「专做A股情绪周期帮你认清每一波的真龙头」

这句话用在:  
- 抖音主页简介第一行  
- 视频第一秒的口播比如“我是XX一个做超短情绪的交易者。”

---

## 二、账号基础包装(直接给模板)

1. 账号名示例自己替换“XX”  
   - 「XX说情绪」  
   - 「XX聊龙头」  
   - 「XX超短情绪」  
   - 「A股情绪观察员XX」

2. 主页简介模板(你可以直接改名就用)

> A股超短实战  
> 主讲:板块情绪周期 / 龙头选拔  
> 不荐股不带单,只讲我自己的交易思路  
> 仅作个人复盘记录,非投资建议

3. 头像  
   - 优先:你本人正脸/侧脸 + 简单字(“情绪 / 龙头 / 超短”三选一)  
   - 不露脸就用统一风格Logo例如深色底 + 白字“情绪周期”

---

## 三、内容设计:为“完全小白”重构你的专业

你擅长的是很专业的一块,但受众是小白,核心是:  
- 不讲深邃理论  
- 讲「看得见、听得懂、记得住」的东西

### 1必备的固定栏目建议至少两个

① 《今日A股情绪温度·30秒版》  
   每个交易日收盘后 3060 秒讲三件事:  
   - 今天情绪是:冰点 / 修复 / 高潮 / 退潮  
   - 主线板块是谁?(最多说 12 个)  
   - 哪个是真龙头?为什么是它?(一句话逻辑)

② 《这一波行情的真龙头是谁?》系列  
   - 一期只讲一个板块的一只“绝对核心”  
   - 用最近几天的K线 + 板块涨幅录屏简单解释:  
     - 为什么它是核心(涨幅、换手、封板质量、带动性)  
     - 什么时候已经不是核心了(开板、分歧、补涨上位等)

③ 《情绪周期小白课》系列(慢慢打基础)  
   每条控制在 60 秒左右,一次只讲一个点,例如:  
   - 什么叫:冰点 / 修复 / 高潮 / 退潮(用历史例子)  
   - 龙头、补涨龙、杂毛票,各是什么?举例+图  
   - 超短里最容易亏钱的3个时间点  
     - 情绪高潮末期去追板  
     - 龙头走完接补涨末端  
     - 退潮期硬做反包

你先选 2 个栏目,保证能坚持,而不是一上来啥都做。

---

## 四、每条视频的讲解结构(照这个模板来)

超短+小白,建议用统一结构,观众容易养成习惯。

### 模板 A盘后情绪视频3060秒

1. 开头 3 秒:  
   - 「今天A股情绪XX。」比如冰点/修复/小高潮)  

2. 中间 2040 秒:  
   - 1 句话说指数状态(跌多涨多)  
   - 2 句话说主线板块  
   - 1 句话点出“今天谁是板块里的真核心,为什么”  
     - 如“算力板里真正的龙头是XX因为它一字打穿、换手最高、带动了整个板块。”

3. 尾巴 510 秒:  
   - 风险提示:  
     - 「现在已经是情绪XX阶段小白不要瞎追。」  
     - 「只是我的盘后记录,不建议你照着买。」

### 模板 B单支龙头拆解视频6090秒

1. 开头:  
   - 「这波XX题材真正的龙头是它而不是你以为的那只。」

2. 正文三点:  
   - 它是怎么从板块里“被选出来”的:  
     - 第一个涨停 / 连板最多 / 首个反包 / 放量换手最好  
   - 它如何带动:  
     - 带起板块涨停潮 / 反复给板块做情绪修复  
   - 它什么时候“退位”:  
     - 高位天地、断板放巨量、补涨上来抢风头

3. 结尾:  
   - 「现在它处在XX阶段如高位分歧/退潮),新手别接最后一棒。」

---

## 五、把“板块情绪”和“绝对核心”讲小白能懂

你可以准备几套固定说法,反复用:

1. 情绪阶段,用生活比喻:  
   - 冰点:大家都怕,不敢买(涨停家数少、放量大跌多)  
   - 修复:突然有人敢出手,出现明星股带头(龙头首板/反包)  
   - 高潮:什么都涨、连板一片、大家打板都赚钱(高位风险最大)  
   - 退潮:龙头走弱、补涨乱飞、炸板多,新手进去基本挨打

2. 什么是“绝对核心龙头”(小白版定义):  
   - 涨得最快、最猛、最早启动的那只  
   - 整个板块涨停,它往往是最先封板、最难被砸开的  
   - 板块回调时,它率先止跌、带着板块重新冲起来

3. 你可以明确告诉小白:  
   - 「我不带你去打这些票,我只是告诉你:  
      什么时候是龙头赚钱的阶段,什么时候是给人接盘的阶段。」  

既展示你能力,又不踩“荐股”红线。

---

## 六、第一批内容的具体安排(可以直接照抄题目)

先准备 710 条视频当“启动库存”:

1《我是XX一个做超短情绪的交易者》  
   - 你超短几年了、主要做什么段位(打板/接力/混沌)  
   - 你这个号以后每天/每周会固定输出什么

2《20秒教你看懂今天A股情绪是冷还是热》  
   - 用历史某天举例,解释“冰点”和“高潮”的差异(涨停数+板块情况)

3《这一波XX题材真正的龙头是它》  
   - 挑一波你熟悉的经典行情案例来讲(不用讲现在的,讲历史更安全)  

4《为什么90%的散户追板都死在“高潮末期”》  
   - 讲情绪高潮末尾的特征:  
     - 涨停家数爆多 / 连板高度见顶 / 补涨杂毛一堆  
   - 明确说:这个阶段小白最容易亏钱

5《超短情绪里的3个典型角色龙头、补涨、杂毛》  
   - 用简图/录屏 K 线画出 3 个区别  
   - 各举1个历史例子

6《我认定“龙头”的4个标准》  
   - 启动最早 / 板块带动性 / 换手质量 / 情绪修复能力  
   - 每条用1句白话解释 + 盘面截图

后面再逐渐加:  
- 每日盘后情绪复盘  
- 单个板块的龙头拆解  
- 粉丝评论区问某个板块你录屏讲5分钟变成60秒剪辑

---

## 七、合规和话术安全线(做超短题材更要注意)

1. 永远不要说:  
   - 「明天跟我一起上」  
   - 「这只明天还能干」  
   - 「目标价××,冲」  
   - 「今天尾盘上车,明天大概率核不掉」

2. 统一用:  
   - 「这是我盘后的个人复盘记录,不构成投资建议。」  
   - 「我自己会把它当×阶段,但不建议小白去接。」  
   - 「你要真想做,仓位自己控制,我不会带单。」

---

## 八、你现在可以马上做的两件事

1. 选定并写下来:  
   - 抖音号名比如“XX说情绪”  
   - 一句话定位比如“专讲A股超短情绪和龙头”  
   - 两个固定栏目名称:  
     - 《今日A股情绪温度》  
     - 《这一波的真龙头是谁?》

2. 先写 3 条视频的草稿(每条几行就行):  
   - 第1条自我介绍 + 账号能给粉丝什么  
   - 第2条用历史上一波题材行情讲清“真龙头”是咋选出来的  
   - 第3条用一个极端例子讲“高潮末期追板是怎么被埋的”

如果你愿意,可以把:  
- 你想好的账号名  
- 你的一句话定位草稿  
- 打算做的两个固定栏目名字  

发给我,我可以帮你把这几句文案改得更利于涨粉、又不踩红线。
In [3]:
pip install openai
Collecting openai
  Obtaining dependency information for openai from https://files.pythonhosted.org/packages/55/4f/dbc0c124c40cb390508a82770fb9f6e3ed162560181a85089191a851c59a/openai-2.8.1-py3-none-any.whl.metadata
  Downloading openai-2.8.1-py3-none-any.whl.metadata (29 kB)
Requirement already satisfied: anyio<5,>=3.5.0 in c:\programdata\anaconda3\lib\site-packages (from openai) (3.5.0)
Collecting distro<2,>=1.7.0 (from openai)
  Obtaining dependency information for distro<2,>=1.7.0 from https://files.pythonhosted.org/packages/12/b3/231ffd4ab1fc9d679809f356cebee130ac7daa00d6d6f3206dd4fd137e9e/distro-1.9.0-py3-none-any.whl.metadata
  Downloading distro-1.9.0-py3-none-any.whl.metadata (6.8 kB)
Requirement already satisfied: httpx<1,>=0.23.0 in c:\programdata\anaconda3\lib\site-packages (from openai) (0.28.1)
Collecting jiter<1,>=0.10.0 (from openai)
  Obtaining dependency information for jiter<1,>=0.10.0 from https://files.pythonhosted.org/packages/bb/60/1032b30ae0572196b0de0e87dce3b6c26a1eff71aad5fe43dee3082d32e0/jiter-0.12.0-cp311-cp311-win_amd64.whl.metadata
  Downloading jiter-0.12.0-cp311-cp311-win_amd64.whl.metadata (5.3 kB)
Requirement already satisfied: pydantic<3,>=1.9.0 in c:\programdata\anaconda3\lib\site-packages (from openai) (2.11.7)
Requirement already satisfied: sniffio in c:\programdata\anaconda3\lib\site-packages (from openai) (1.2.0)
Requirement already satisfied: tqdm>4 in c:\programdata\anaconda3\lib\site-packages (from openai) (4.65.0)
Requirement already satisfied: typing-extensions<5,>=4.11 in c:\programdata\anaconda3\lib\site-packages (from openai) (4.12.2)
Requirement already satisfied: idna>=2.8 in c:\programdata\anaconda3\lib\site-packages (from anyio<5,>=3.5.0->openai) (2.10)
Requirement already satisfied: certifi in c:\programdata\anaconda3\lib\site-packages (from httpx<1,>=0.23.0->openai) (2024.6.2)
Requirement already satisfied: httpcore==1.* in c:\programdata\anaconda3\lib\site-packages (from httpx<1,>=0.23.0->openai) (1.0.9)
Requirement already satisfied: h11>=0.16 in c:\programdata\anaconda3\lib\site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.16.0)
Requirement already satisfied: annotated-types>=0.6.0 in c:\programdata\anaconda3\lib\site-packages (from pydantic<3,>=1.9.0->openai) (0.7.0)
Requirement already satisfied: pydantic-core==2.33.2 in c:\programdata\anaconda3\lib\site-packages (from pydantic<3,>=1.9.0->openai) (2.33.2)
Requirement already satisfied: typing-inspection>=0.4.0 in c:\programdata\anaconda3\lib\site-packages (from pydantic<3,>=1.9.0->openai) (0.4.1)
Requirement already satisfied: colorama in c:\programdata\anaconda3\lib\site-packages (from tqdm>4->openai) (0.4.6)
Downloading openai-2.8.1-py3-none-any.whl (1.0 MB)
   ---------------------------------------- 0.0/1.0 MB ? eta -:--:--
   ---------------------------------------- 0.0/1.0 MB ? eta -:--:--
   - -------------------------------------- 0.0/1.0 MB 653.6 kB/s eta 0:00:02
   - -------------------------------------- 0.0/1.0 MB 653.6 kB/s eta 0:00:02
   -- ------------------------------------- 0.1/1.0 MB 363.1 kB/s eta 0:00:03
   --- ------------------------------------ 0.1/1.0 MB 476.3 kB/s eta 0:00:02
   ----- ---------------------------------- 0.1/1.0 MB 607.9 kB/s eta 0:00:02
   ------ --------------------------------- 0.2/1.0 MB 697.2 kB/s eta 0:00:02
   ------- -------------------------------- 0.2/1.0 MB 556.2 kB/s eta 0:00:02
   --------- ------------------------------ 0.2/1.0 MB 654.9 kB/s eta 0:00:02
   ----------- ---------------------------- 0.3/1.0 MB 707.1 kB/s eta 0:00:02
   --------------- ------------------------ 0.4/1.0 MB 922.1 kB/s eta 0:00:01
   ----------------- ---------------------- 0.5/1.0 MB 938.8 kB/s eta 0:00:01
   ------------------- -------------------- 0.5/1.0 MB 952.6 kB/s eta 0:00:01
   ---------------------- ----------------- 0.6/1.0 MB 1.0 MB/s eta 0:00:01
   -------------------------------- ------- 0.8/1.0 MB 1.4 MB/s eta 0:00:01
   -------------------------------------- - 1.0/1.0 MB 1.5 MB/s eta 0:00:01
   ---------------------------------------- 1.0/1.0 MB 1.5 MB/s eta 0:00:00
Downloading distro-1.9.0-py3-none-any.whl (20 kB)
Downloading jiter-0.12.0-cp311-cp311-win_amd64.whl (204 kB)
   ---------------------------------------- 0.0/204.9 kB ? eta -:--:--
   --------------------------------------- 204.9/204.9 kB 13.0 MB/s eta 0:00:00
Installing collected packages: jiter, distro, openai
Successfully installed distro-1.9.0 jiter-0.12.0 openai-2.8.1
Note: you may need to restart the kernel to use updated packages.